
As Removal from Drinking Water Adsorption Media Handling

EPA Workshop on Adsorptive Media Processes

Richard S. Dennis

Severn Trent Water Purification, Inc.

August 11, 2004

Discussion Topics

- Media Characteristics
- Packaged Media Delivery & Handling
- Adsorber Loading
- Residuals Handling
- Media Conditioning & Backwashing
- Media Regeneration
- Spent Media Removal
- Media Disposal

Adsorptive Media Characteristics

Bulk Density & Specific Gravity

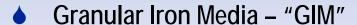
 Higher Lb/Ft³ = Greater Unit Weight & Higher Fluidization Flows

Shape & Size

- Granules, Pellets, Spherical Beads, Powder
- Normal Adsorptive Media Size
 - Low ΔP but Lower Unit Capacity
- Finer Adsorptive Media Size
 - Higher Unit Capacity but High ΔP

Flowability & Friability

- Ease of Loading & Removal
- Physical Attrition in Handling or Service


Miscellaneous

NSF Certification, Consistency, Availability, etc.

Sieve Sizes & Tyler Equivalents					
	Std Sieve	Sieve C	Opening	Wire Dia	Tyler
Į	Designation	mm.	inches	mm.	Mesh Size
I	8.00 mm	8.00	0.312	2.07	2.5
	6.73 mm	6.73	0.265	1.87	3
	5.66 mm	5.66	0.223	1.68	3.5
	4.76 mm	4.76	0.187	1.54	4
	4.00 mm	4.00	0.157	1.37	5
I	3.36 mm	3.36	0.132	1.23	6
	2.83 mm	2.83	0.111	1.10	7
	2.38 mm	2.38	0.0937	1.00	8
	2.00 mm	2.00	0.0787	0.900	9
	1.68 mm	1.68	0.0661	0.810	10
I	1.41 mm	1.41	0.0555	0.725	12
	1.19 mm	1.19	0.0469	0.650	14
	1.00 mm	1.00	0.0394	0.580	16
	841 μm	0.841	0.0331	0.510	20
	707 μm	0.707	0.0278	0.450	24
	595 μm	0.595	0.0234	0.390	28
	500 μm	0.500	0.0197	0.340	32
	420 μm	0.420	0.0165	0.290	35
	354 μm	0.354	0.0139	0.247	42
	297 μm	0.297	0.0117	0.215	48
I	250 μm	0.250	0.0098	0.180	60
	210 μm	0.210	0.0083	0.152	65
	177 μm	0.177	0.0070	0.131	80
	149 μm	0.149	0.0059	0.110	100
	125 μm	0.125	0.0049	0.091	115
4	105 μm	0.105	0.0041	0.076	150
	88 μm	0.088	0.0035	0.064	170
	74 μm	0.074	0.0029	0.053	200
	63 μm	0.063	0.0025	0.044	250
	53 μm	0.053	0.0021	0.037	270
	44 μm	0.044	0.0017	0.030	325
ı	37 μm	0.037	0.0015	0.025	400

SORB 33[™] - Bayoxide® E33 Media

- Manufactured for STS by Bayer AG
- α -Ferric Oxide Hydroxide or α -FeOOH
- Granular Ferric Oxide (GFO) Crystalline

Physical Properties

- Appearance Yellow/Orange
- Particle Size Distribution 0.5-2.0 mm
- Bulk Density 29 Lb/Ft³
- Specific Gravity 3.6 g/cc
- Flowability Flows like GAC when flooded
- Friable Relative to GAC & AA

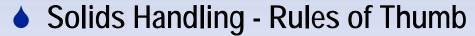
Packaging

- 38 Ft³ Supersacks
- 2 or 4 Ft³ Drums

Similar Commercial Product

- US Filter's GFH Granular Ferric Hydroxide
- Manufactured by Wasserchemie GEH

Media Storage & Delivery


- Some Medias are Dry; Some are Moist
- Media Shelf Life
 - Life Time from Production (4-30 Months)
 - Storage Requirements Conditioned or Ambient
 - Product Deterioration Drying, Surface Loss, etc.
 - Inventory Responsibility by Supplier or Utility

Delivery

- Drums, Supersacks or Bulk
- Larger Unit Volume Minimizes Handling
- Vessel Accessibility for Media Fills

Adsorber Media Loading

- Dry Solids Gravity Feed Simplest
 - Minimal Wastewater & Dust
- Slurries Hydraulic Feed
 - Next Easiest
 - Wastewater Generation Reuse Capability
- Moist Solids from Packaging
 - Labor Intensive with Product Losses

Fill Equipment Requirements

- Readily Available Equipment
- Specialized Availability

Regional Media Service

Size, Experience & Specific Know-how

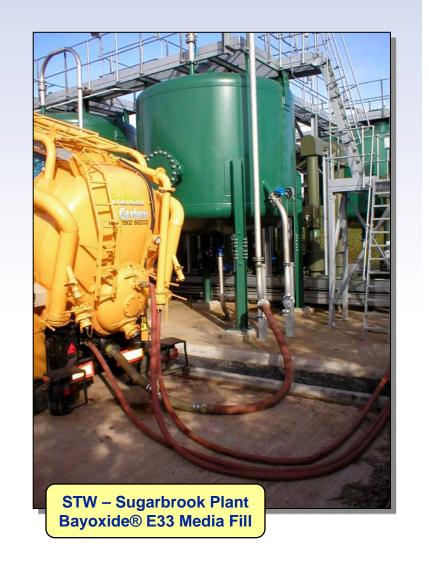
Adsorber Loading – STW Process

Severn Trent Water (STW)

- 2nd Largest Utility in the UK
- 46 MGD of Capacity
- 60 Vessels @ 16 Sites

"Central" Bulk Handling System

- Fill Bulk Carbon Tanker from Sacks Off Site
- Transport Dewatered Media Next Day
- Pictured Site Sugarbrook
 - 4 12'-Ø Adsorbers in Parallel
 - 3.6 MGD Total Capacity


Adsorber Loading – STW Process

"Central" Bulk Handling System (Cont'd)

- Hydraulic Fill of Empty Adsorber from Tanker
- Partial Media Conditioning during Fill
- Wastewater Routed to Backwash Water Reclaim

Process Assessment

- Works Well for STW
- Labor Intensive & Multiple Media
 Handling

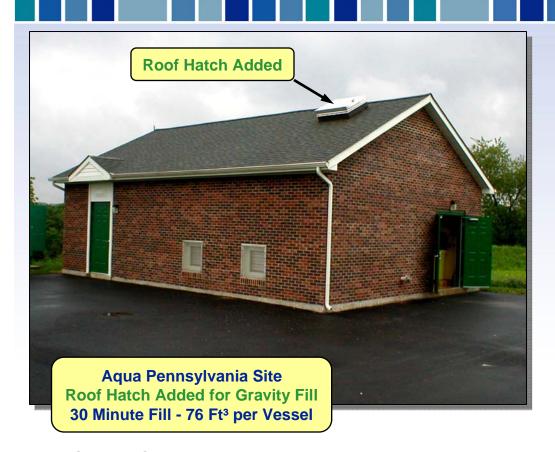
Adsorber Media Loading

Dry Solids Loading

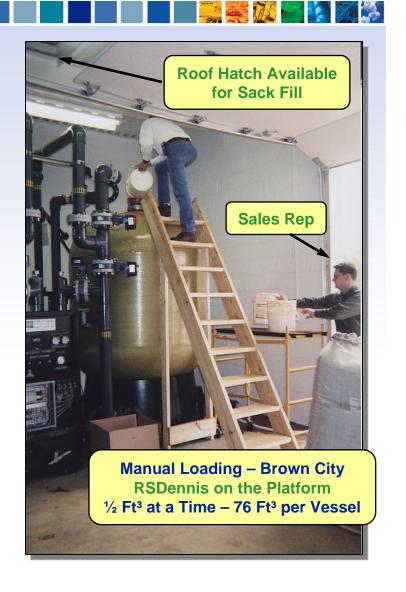
- Headroom Access for Sacks or Drums
 - Crane, Boom Truck or Forklift Access
- Pneumatic Transfer
 - Equipment Intensive Dust Collection
 - Media Attrition

Slurry Loading

- Hopper/Eductor Equipment
- Wastewater Handling


Regional Media Service

- Size, Experience
- Specific Know-how



Media Loading – Dry Gravity Fill

- Small Systems <300 Ft³ Inventory
- Roof Hatch Included/Added for Dry Fill
- Boom Truck Access w/4"-Ø Flex Hose
- Both Sites 300 GPM APU Systems

Media Conditioning & Backwashing

Pretreatment Requirements for Service

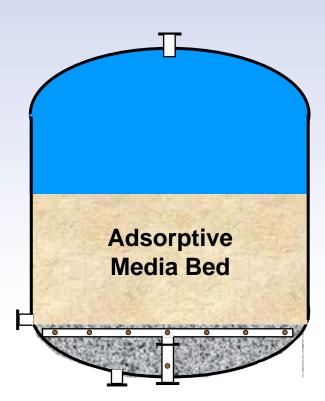
- Media Wetting
- Conditioning for Fines Removal Bed Fluidization
- Regeneration & Rinsing if Media "Conversion" Required
- Off-line Time Requirements Backwashing

Residuals Handling - Wastewater

- Volume Generated & Quality Toxicity, Solids & Corrosivity
 - Classification & Permits
- Non-hazardous Liquids Ditch, Sewer, Evaporation Pond, POTW
- Solids-bearing Liquids Decant Tank to Settle & Collect Solids
- Zero Discharge Surge Tank to Reclaim Liquid to As System Inlet

Media Regeneration & Spent Waste

- Medias with Low As Capacities <10,000 Bed Volumes (BV's)
- Co-adsorption of PPM Level Contaminants Fluoride, etc.


Spent Media Removal

Adsorber Vessel Underdrain Type

- Header/Lateral or HUB & Spoke
- Cone Bottom with Screened Nozzles
- False Bottom with Screened Nozzles or Porous Plate
- Distribution Gravel Underbedding

Media Removal Method

- Pressurized Hydraulic Slurry Flow
- Vacuuming
- Gravel Underbedding Removal
- Hydraulic Wastewater Disposal

Header/Lateral w/Underbedding

Spent Media Removal

Considerations

- Available Off-line Timing for Change-out
- Vessel Entry Needs Disinfection, etc.
- Simple, Complete Removal vs Thorough Process
- Gravel Underbedding Losses/Replacement
- Empty Vessel Internals Inspection

Severn Trent Water Process

- Underdrain: Header/Lateral with Gravel
- Drain Vessel & Media Bed of Water
- Vacuum Media from Top Manway to Truck
- Leave Gravel Underbedding Intact
- Vessel Entry: Remove Media "Heal" & Inspection
- Labor Intensive UK Safety Laws

Spent Media Disposal

Spent Media Classification

- Hazard Criteria for Leachate: As > 5 mg/L; V > 5 mg/L; Cr > 5 mg/L
- Non-Hazardous Classification Passes EPA's TCLP Solids Waste Test
 - TCLP Toxic Characteristic Leaching Procedure
- Hazardous Waste Solids 3-6 Times More Expensive Disposal
- Total Mass of As Not Critical to Hazard Classification

California Hazard Classification

- Soluble Threshold Limit Concentration (STLC) the "WET" Test
 - More rigorous test than TCLP
- Total Threshold Limit Concentration (TTLC)
 - Total Mass of As in the Solid Limit is 500 mg/Kg As
 - Some Medias Have As Capacity Greater than this TTLC Limit